DONATOR-AKZEPTORKOMPLEXE DES SELEN(VI)-OXIDS MIT PYRIDIN

J.TOUŽÍN und P.BAUER

Institut für anorganische Chemie, Purkyně-Universität, 611 37 Brno

.

Eingegangen am 5. April 1974

Bei der Untersuchung der Reaktion des Selen(VI)-oxids mit Pyridin im Medium flüssigen Schwefeldioxids wurde mit Hilfe der Raman-Spektroskopie nachgewiesen, daß neben $C_5H_5N.SeO_3$ in Übereinstimmung mit den Ergebnissen der konduktometrischen Titration auch ein Addukt mit der Zusammensetzung $C_5H_5N.Se_2O_6$ entsteht. Auf Grund der Ergebnisse wurde das Reaktionsschema der untersuchten Reaktion vorgeschlagen. Die mittels Schwingungsspektroskopie untersuchte Partialhydrolyse des $C_5H_5N.Se_2O_6$ führte bei kontrolliertem Luftfeuchtigkeitszutritt vorerst zur Polymerisation des $C_5H_5N.Se_2O_6$. Als Hydrolysenendprodukt ergab sich ein äquimolares Gemisch von Selensäure und Pyridiniumhydrogenselenat. Wie durch Untersuchung des thermischen Verhaltens von $C_5H_5.SeO_3$ festgestellt wurde, existiert diese Substanz in zwei kristallinischen Modifikationen. Ihre gegenseitige Umbildung ist reversibel und ist bei Raumtemperatur nur in einer ihrer Formen stabil. Polymorphie des $C_5H_5N.Se_2O_6$ wurde nicht beobachtet.

Die Additionsverbindung C_5H_5N . SeO₃ ist mit Hilfe mehrerer Methoden¹⁻⁵ erhältlich. Auf Grund der Untersuchung der Infrarotspektren dieser Substanz wurde die Ansicht ausgesprochen, daß das Selen(VI)-oxid in ihr wie auch im Donator--Akzeptorkomplex mit Trimethylamin seine tetramere cyclische Struktur beibehält^{4,6}. Wie sich jedoch zeigte, beruht diese Ansicht auf einem Irrtum und beide Substanzen sind mit monomeren D. SeO₃-Molekülen (D = Pyridin, Trimethylamin) gebildet⁷. Der Bildungsmechanismus dieser Substanzen wurde bisher nicht erläutert. Wie festgestellt wurde, sind die tetrameren Selen(VI)-oxidmoleküle in nichtwäßrigen Lösungen nicht im nachweisbaren Maß dissoziiert⁸ und ihre Reaktion mit organischen Basen kann daher mittels des einfachen Schemas

$$D + SeO_3 \rightarrow D-SeO_3$$

nicht erfaßt werden. Zur Erläuterung dieses Problems wurde von uns der Versuch gemacht, durch die Untersuchung der Schwingungsspektren des Produktes der Reaktion des Selen(VI)-oxids mit Pyridin in den Molverhältnissen 4:1, 4:3, 2:1 und 1:1 (bezogen auf die monomere SeO₃-Einheit) einen Beitrag zu leisten.

EXPERIMENTELLER TEIL

Verwendete Chemikalien

Selen(VI)-oxid wurde durch Dehydratation von wasserfreier Selensäure mit Phophor(V)-oxid hergestellt⁹ und mittels Vakuumsublimation gereinigt. h_5 - und d_5 -Pyridin wurden in der Siedehitze mit Selen(IV)-oxid von reduzierenden Beimengungen befreit, mit Hilfe von festem Kaliumhydroxid getrocknet und destilliert. Das verwendete Lösungsmittel wurde gereinigt und mittels herkömmlicher Methoden getrocknet.

Analytische Methoden

Selen wurde mittels Titration¹⁰, Pyridin photometrisch mit Hilfe des Zeiss-Spektrophotometers "Specord UV VIS" bei 256 nm bestimmt. Die Schmelzpunkte wurden unterm Mikroskop in zugeschmolzenen Kapillaren ohne Korrektion bestimmt. Die Infrarotspektren wurden mit Hilfe des Zeiss-Apparats "UR 20" in Nujolsuspension in Silberchloridküvetten gemessen. Die Ramanspektren wurden mit Hilfe des Apparats "Ramalog 3" (Spex, Metuchen) gewonnen. Zur Anregung diente die Linie 488 nm des Ar⁺-Lasers (RCA, Lancaster) mit einer Leistung von ca. 100 mW. Die Proben wurden in Kapillarküvetten aus nichtfluoreszierendem Glas gefüllt und eingeschmolzen. Auf diese Weise konnten auch Lösungsspektren in flüssigem Schwefeldioxid bei Raumtemperatur aufgenommen werden. Die Reaktionen des Selen(VI)-oxids mit Pyridin in den erwähnten Molverhältnissen wurden in Apparaten vorgenommen, die das Einschmelzen von mäßig übersättigten Lösungen der Reaktionsgemische in Küvetten für die Messungen von Ramanspektren bei Raumtemperatur gestatteten. Die Spektren der aus der Lösung unter Kühlung kristallisierenden festen Substanzen wurden direkt im Medium flüssigen Schwefeldioxids aufgenommen, da ein Rücklösen sehr langsam erfolgte. Die gewonnenen Spektren waren mit denen der Substanzen, die präparativ isoliert und in Abwesenheit flüssigen Schwefeldioxids aufgenommen wurden, identisch. Das thermische Verhalten wurde mit Hilfe des Apparats "Derivatograph" (Orion, Budapest) untersucht. Die Proben wurden zwischen zwei Schichten geglühten Siliciumoxids untergebracht, wobei die Messung in Trockenstickstoffatmosphäre durchgeführt wurde.

Herstellung von C5H5N.SeO3 und C5D5N.SeO3

Die Herstellung dieser Substanzen wurde mittels der in der Arbeit³ beschriebenen Methode vorgenommen. Ihr Nachteil beruht auf der leichten Reduktion des sechswertigen bis zum elementaren Selen während des Eindickens der $C_5H_5N.SeO_3Lösung$, und zwar dann, wenn zur Reaktion Pyridin im Überschuß verwendet wurde. Kommt ein geringer Selen(VI)-oxidüberschuß zur Anwendung, droht diese Gefahr nicht, das im Produkt anwesende Addukt $C_5H_5N.SeO_6$ äußert sich jedoch im niedrigeren Schmelzpunkt des Präparats, der beim reinen $C_5H_5N.SeO_3$ 175°C beträgt. Aus dem Rohprodukt kann $C_5H_5N.Se_2O_6$ durch Waschen mit Diäthyläther beseitigt werden, mit der die Substanz unter Bildung von $C_5H_5N.SeO_3$ und von im Diäthyläther primär gutlöslichen Produkten, die auch durch direkte Reaktion von Selen(VI)-oxid mit Diäthyläther im Medium flüssigen Schwefeldioxids entstehen¹¹, reagiert, wobei deren Charakter bisher nicht zufriedenstellend erklärt wurde. Zur Rekristallisation von $C_5H_5N.SeO_3$ kann flüssiges Schwefeldioxid oder Acetonitryl herangezogen werden.

Für $C_5H_5N.SeO_3$ (206,1) berechnet: 38,39% C_5H_5N , 38,32% Se(VI); gefunden: 38,24% C_5H_5N , 38,32% Se(VI).

TABELLE I											
Schwingungs	spekt	tren c	les C ₅ H ₅	N . SeO	3 und der	Produkte se	siner Partialh	ydrolyse			· · · ·
C ₅ H ₅ N Lösung R/	. SeC in SO	$\frac{1}{2}$	C ₅ H ₅ 1	N. SeO ₅ (s) &A	, Hyc C ₅ H	lrolyse des I ₅ N . SeO ₃ RA	C ₅ H ₅ N (s) IF	. SeO ₃	Hydrolys C ₅ H ₅ N . IR	e des SeO ₃	Zuordnung
					30″	120″			60″	180″	
l			35	E	1	1					
Managery			44	E							δ Gitter
[61	s		I					τSeO_3
1			77	s		***					$\left\{ \tau^* \operatorname{SeO}_2 \right\}$
l			136	sst	136						$\tau^* \text{SeO}_3$
ţ			170	s	170S	ch –)
			195	SS	I	I					
226	u	d	J 233	ш	233	233					φ'SeO ₃ , <i>ℓ</i> '*SeO ₃ , δ*SeOSe
			Ì 249	s	251	250					ωPy, ω*SeO,
283	s	dp	285	s	289	289					Py, 2SeO3
l					307	→ 309					δ^* SeO ₂ , ρ^* SeO ₂
I			1		I	→ 323					e*SeO ₃ , ô*OSeN
			353	Sch s	J 359	361					vSeN, v*SeN
366	s	×	359	s							δ _s SeO ₃
			374	s	375	376					v21
			398	ss	400	↓ 400	400b	Е			$\delta_{\rm as} { m SeO}_3, \delta_{\rm s}^* { m SeO}_3$
and the second			, ,		407	↓ 409	1		400b	400b	$\delta_{\rm s}^{\prime} * {\rm SeO}_3$
-			I		420	→ 421	-				$\delta_{\rm as}^{*} { m SeO}_{3}$
l			-	٠		↓ 431					
449	SS	dp	450	ss (450	451	453	, E	454	455	v27
www			I		559	→ 559 ←			560 →	$560 \leftarrow$	v _s SeOSe
Ľ			-		612	→ 613	1		$612 \rightarrow$	614	PyH ⁺
644	s	dþ	643	s	644	645	642	s	643Sch	645Sch	v26
662	s	d	{ 663	s s	663	← ∫665	{ 668	st {	668	{ 668	{ y3
			ا 667	7 SS	667S	ich [-			[v12
www			I		ċ	ċ	-		680 Sch \rightarrow	683 ←	$v_{\rm as}^*$ SeOSe

Collection Czechoslov, Chem. Commun. [Vol. 40] [1975]

Toužín, Bauer:

						, ,	<u>َ</u>	I																				ig der Banden
v*SeOH PvH +	v20, v23	$\int v_{\rm s}^* {\rm SeO}_3$, ,	v25	$v_{\rm s}{ m SeO}_3$	$v_{s}^{*}SeO_{2}, v_{as}^{*}SeC$	$\int v_{s}^{\prime} \operatorname{SeO}_{3}, v_{as}^{*} \operatorname{SeO}_{3}$	Vas SeO3, v24	v22	P_{yH}^{+}	ν1	P_{yH}^{+}	<i>v</i> 6	78	PyH ⁺	v17	Σ	v16	Σ	ν5	v11	Σ	v15	v18	, 6 <i>1</i>	v14	ν4	ntensitätsänderun
720 760	770Sch	838			880b	905b	[950b		i	1 015	1 020	1 037Sch	1 050	1 060	1 076Sch	1 100												e wird die I
720 760 760	774 ←	839 +		865Sch	879	^ 1	953b		e .	$015Sch \rightarrow$	020 ←	037	050	090	076Sch	100												Jurch Pfeile
	st	~		l S	st		sst J		S	1(s 11	11	m 1	st 1	1	ss 1		s	SS	SS	s	SS	s	sst	ı st	SS	Е	H ₅ NH ⁺ ; C
1	773	***	I	864Scł	878	- market	955b		992Sch	ŀ	1 020	1	1 050	1 059	1	1 100	I	1 159	1 172	1 209	1 271	1 308	1 350	1 475	1 480Scł	1 578	1 613	PyH ⁺ -C ₅
717 [1765	835	847Sch		875b	905Sch	954 [965Sch }	995Sch	014	020	÷	053		073	100												lhydrolyse;
715 → (<i>T15</i>	835 →	848	855	875	907Sch	952	966	995Sch	$1 014 \rightarrow 1$	1 020 1	¢.	1 051 1			1 100 1												SeO ₃ -Partia
	SS			SS	sst		s	s	SS		st		s	h ss Ì		SS	h ss	s		s	SS		SS	SS	h ss	s	s	SH ₅ N.
		1	l	858	875		951	967	992	1	1 021		J 1 050	1 1 062Sc		1 100	1 150Sc	1 160	ł	1 202	1 276	1	1 354	J 1 480	Ì 1 492Sc	1 581	1 615	ukte der C
				dp	đ		đ	dþ			đ		dþ							d	d				d	d	d	r Prod
				SS	sst		SS	s			st		s							SS	SS				SS	SS	SS	ng de
ì !	c.	I	1	858	875		948Sch	967	¢.	I	1 021		1 050			ć		ć		1 209	1 276		ċ		1 490	1 584	1 621	* Schwingu

1299

TABELLE II

Schwingungsspektren des C_5D_5N . SeO₃ und der Produkte seiner Partialhydrolyse

C ₅ D ₅ N . (s) RA	SeO ₃	Hydr C_5D_5	rolyse des 5N . SeO ₃ RA	C ₅ D ₅ N . (s) IR	SeO ₃	Hyd C ₅ D	lrol 5 II	lyse des 1 . SeO ₃ R	Zuordnung
	_	60″	180″		-	60″		180″	-
129	m								δ Gitter, τ SeO ₃
163	s								$\int \tau^* \text{SeO}_2, \tau^* \text{SeO}_3$
225	st	225	226						ϱ' SeO ₃ , ϱ' *SeO ₃ , δ *SeOSe
242	m	242	245						ω Py, ω *SeO ₂
278	s	278	279						<i>ρ</i> Py, <i>ρ</i> SeO ₃
		310	$\rightarrow 310$						ρ^* SeO ₂ , ρ^* SeO ₃
323Sch	SS	323	\rightarrow 323						$v21, \delta^* \text{SeO}_2$
351	s	351Sch	$h \leftarrow 353$ Sch						vSeN, v*SeN
357	m	357	361						δ_{s} SeO ₃
372	s	372	← 374						δ'_{s} SeO ₃
		∫383Sch	1 \ [δ_{as} SeO ₃
401	SS	ໄ 400	→ ໄ 400	400	m	400	4	400	δ_{s}^{*} SeO ₃
414	SS	413	421	422	m	423		425	v27
			→ 430			?		?	δ_{as}^* SeO ₃
498	SS	?	?	505Sch	SS	507	~ -	_	v26
537	SS	?	?	536	st	536	:	537	v23
_		557	→ 561b ←			568 -	→ :	568 ←	$v_{\rm s}^*$ SeOSe
		588	→ 591			590 -	-> :	590	PyH ⁺
615	s	615	615	615	SS	615		615	v12
634	s	634	$\rightarrow 636$	636	m	636	~ (632	v3
		657	→ 658	_		669		676Sch	v [*] _{as} SeOSe
681	SS	683	689	681Sch	SS	6805	ch	680Sch	v20
_		713	\rightarrow 717	_		720 -	\rightarrow	720	v*SeOH
783	SS	780	780	780	SS	779		779	ν22
808	SS	?	?	811	·SS	811		812	v25
824	SS	829	→ 836	827	m	830 -	→	835Sch	$v24$, v_s^* SeO ₃
846	SS	849	851	846	m	846		846	v17
875	sst	873	875	878	m	878		868	v16, $v_s \text{SeO}_3$
		∫881Sch	∫ <u>88</u> 3	_	ſ	900S	ch	∫910Sch	v_s^* SeO ₂ , v_{as}^* SeO ₃
903Sch	SS	l	Ì	?	ો			l	v6, v8
953	s	954	955	∫957	sst∫	955		∫950b	v'_{s} SeO ₃ , v''_{as} SeO ₃
973	S	965	967Sch	l	l			1	$v_{as} SeO_3$
977	sst	978	978	979Sch	sst	980S	ch	980	v1
	ſ	1 013	∫1 015	_		1 018]	1 020	PyH ⁺
1 033	ss l		1	1 033	S	1 033]	1 032	v5, v11
<u> </u>				1 098	SS	1 100 -	€—]
1 1 5 2	SS								Σ
				1 218	ss				
1 275	SS			1 272	s				v15
—				1 316	S				Σ

Donator-Akzeptorkomplexe des Selen(VI)-oxids

TABELLE II

(Fortset)	zung)					
C ₅ D ₅ N (s R/	. SeO ₃) A	Hydrolyse des $C_5D_5N \cdot SeO_3$ 60" RA 180"	C ₅ D ₅ N . (s) IR	SeO ₃	Hydrolyse des $C_5D_5N \cdot SeO_3$ 60″ IR 180″	Zuordnung
1 342	55		1 341	st		ν 9 ν18
	33		1 393Sch	SS]_
			1 412	SS		Σ
1 548	SS		1 542	m		v14
1 577	S S		1 572	m		v4
			1 590	S S)
1 623	88		1 618	SS		Σ
			1.658	SS		
						·

Bezeichnung der Bandenintensität siehe Tabelle I.

Herstellung von C5H5N.Se2O6 und C5D5N.Se2O6

Der Lösung von 2,6 g (20,48 mmol) Selen(VI)-oxid in 150 ml flüssigem Schwefeldioxid wird bei der Temperatur von -10° C eine Lösung von 0.83 g (10,49 mmol) Pyridin in 50 ml desselben Lösungsmittels tropfenweise zugesetzt. Nach Eindicken des Reaktionsgemisches auf ein Volumen von ca. 40 ml und Abkühlen auf -80° C schieden sich weiße Kristalle einer extrem hygroskopischen Substanz aus, die unter dauerndem Kühlen filtriert, mit einer kleinen Menge flüssigen Schwefeldioxids gewaschen und im Vakuum bei Raumtemperatur getrocknet wurde. Sie wurde in einer 70,3%igen Ausbeute gewonnen, ihr Schmelzpunkt belief sich auf 90-92°C.

Der geringe Pyridinüberschuß bei der Herstellung dieser Substanz bietet die Gewähr, daß das gewonnene Präparat kein nichtumgesetztes Selen(VI)-oxid enthält. $C_5H_5N.SeO_3$ ist in flüssigem Schwefeldioxid um das Vielfache besser löslich als $C_5H_5N.Se_2O_6$ und bleibt auch nach stärkerem Eindicken und Kühlen des Reaktionsgemisches in Lösung.

Für $C_5H_5N.Se_2O_6$ (333,0) berechnet: 23,75% C_5H_5N , 47,42% Se(VI); gefunden: 23,46% C_5H_5N , 47,53% Se(VI).

ERGEBNISSE UND DISKUSSION

Wie aus den bei der Untersuchung der Reaktion des Selen(VI)-oxids mit Pyridin im Medium von flüssigem Schwefeldioxid gewonnenen Ergebnissen hervorgeht, entsteht neben der bereits bekannten Additionsverbindung $C_5H_5N.SeO_3$ in diesem System in Übereinstimmung mit dem Ergebnis der Leitfähigkeitstitration³ auch der Donator-Akzeptorkomplex $C_5H_5N.Se_2O_6$. Die Reaktionen in den Molverhältnissen 4:1 und 4:3 führten nicht zum Entstehen von Verbindungen mit anderem Komponentenmolverhältnis als 1:1 und 1:2. Sie können durch die Gleichungen

$$2(\text{SeO}_3)_4 + 2 \text{ } \text{C}_5\text{H}_5\text{N} \rightarrow (\text{SeO}_3)_4 + 2 \text{ } \text{C}_5\text{H}_5\text{N.Se}_2\text{O}_6$$
$$(\text{SeO}_3)_4 + 3 \text{ } \text{C}_5\text{H}_5\text{N} \rightarrow \text{ } \text{C}_5\text{H}_5\text{N.Se}_2\text{O}_6 + 2 \text{ } \text{C}_5\text{H}_5\text{N.SeO}_3$$

ausgedrückt werden.

Collection Czechoslov, Chem. Commun. [Vol. 40] [1975]

Schwingungsspektren und Struktur des C₅H₅N. SeO₃ und C₅D₅N. SeO₃

Die Schwingungsspektren des C_5H_5N . SeO₃ und des C_5D_5N . SeO₃ können, wie aus den Tabellen I und II ersichtlich ist, unter der Voraussetzung interpretiert werden, daß sie von in die Punktgruppe der C_s -Symmetrie gehörenden monomeren Molekülen gebildet werden. In den unter vollkommenem Ausschluß von Luftfeuchtigkeit aufgenommenen Spektren zeigen sich keine Banden, die den Valenzschwingungen der SeOSe-Brückenbindungen zugesprochen werden könnten, wodurch die Möglichkeit der Beibehaltung des tetrameren Se₄O₄-Rings in den Donator-Akzeptorkomplexen des Selen(VI)-oxids mit organischen Basen vollkommen ausgeschlossen wird.

Von den 39 Fundamentalschwingungen des C_5H_5N . SeO₃-Moleküls gehören 27 zu den Schwingungen des Pyridinrings und die übrigen 12 zu der N-SeO₃-Gruppe. In Abhängigkeit von der Orientierung des Pyridinrings mit Bezug auf die Molekülsymmetrieebene können zwei vollreduzierte Darstellungen geschrieben werden:

$$\begin{split} \Gamma_{C_5H_5N.SeO_3} &= 26A'^{P,\alpha} + 13A''^{P,\alpha} \left(C_5H_5N \text{ liegt in } \sigma_h\right), \\ \Gamma'_{C_5H_5N.SeO_3} &= 22A'^{P,\alpha} + 17A''^{P,\alpha} \left(C_5H_5N \text{ ist senkrecht zu } \sigma_h\right). \end{split}$$

Die Entscheidung zwischen diesen Alternativen kann auf Grund der Polarisationsmessungen der Ramanlinien ermöglicht werden. Insofern die Molekülsymmetrieebene einen Pyridinring enthielte, würde ein Übergang in den A'-Typ erfolgen und im Ramanspektrum würden die Banden der Schwingungen des A₁- und B₁-Typs $(v_1 - v_{19})$ polarisiert, während im zweiten Fall in den A'-Typ die Schwingungen des A₁- und B₂-Typs $(v_1 - v_{10}, v_{23} - v_{27})$ übergingen. Von den zwölf Schwingungen der N-SeO₃-Gruppe sind vier Valenz- $[2v_s \text{ SeO}_3 (A'), v_{as}\text{SeO}_3(A'') \text{ und}$ vSeN(A') und acht Deformationsschwingungen $[2\delta_s\text{SeO}_3(A'), \delta_{as}\text{SeO}_3(A''), \varrho\text{SeO}_3 .$ $. (A''), \varrho'\text{SeO}_3(A'), <math>\tau\text{SeO}_3(A'')$ und zwei Deformationen der CNSe-Winkel, die mit $\varrho\text{Py}(A'')$ und $\omega\text{Py}(A')$ bezeichnet sind].

Die Infrarotspektren des C_5H_5N . Se O_3 im über 400 cm⁻¹ liegenden Bereich wurden bereits in den Arbeiten^{6,7} interpretiert. Wir beschränken uns daher lediglich auf die Diskussion der aus den Ramaspektren gewonnenen Erkenntnisse.

Im Bereich der Valenzschwingungen der SeO-Vielfachbindungen zeigen sich im Ramanspektrum alle drei erwarteten Banden. Auf Grund ihrer Wellenzahlenwerte können für die Kraftkonstanten und die Ordnung dieser Bindungen folgende Werte festgestellt werden: $f_{SeO} = 6,80 \text{ mdyn/Å}$, $f'_{SeO} = -0,02 \text{ mdyn/Å}$ und $N_{SeO} = 1,78$. Unter der Voraussetzung, daß die Summe der Ordnungen der durch das Selenatom gebildeten Bindungen gleich sechs ist, kann aus der bekannten Ordnung der SeO-Bindungen für die Ordnung und die Kraftkonstante der SeN-Bindung die Werte $f_{SeN} = 2,2_2 \text{ mdyn/Å}$ und $N_{SeN} = 0,6$, die allerdings nur als eine grobe Annäherung an den realen Molekülzustand zu werten sind, bestimmt werden. Die Abschätzung der Wellenzahl des der SeN-Valenzschwingung entsprechenden Bandes ist selbst bei

der Kenntnis dieser Werte schwierig, da die "aktive" Masse des Stickstoffatoms bei der Schwingung nicht mit Sicherheit ermittelt werden kann. Dient zur Berechnung die tatsächliche Stickstoffatommasse, erhält man für die Wellenzahl der SeN-Valenzschwingung den Wert von ca. 563 cm⁻¹ und zieht man an deren Stelle die Masse des gesamten Pyridinmoleküls in Betracht, erhält man den Wert von ca. 372 cm^{-1} . Der tatsächliche Wert der Wellenzahl der SeN-Valenzschwingung liegt wahrscheinlich im unteren Teil dieses Intervalls, also im Bereich, in dem sich auch die Deformationsschwingungen der SeO₃-Gruppe äußern. Beide symmetrischen Deformationsschwingungen δ_s SeO₃ gehören ebenso wie vSeN dem Symmetrietyp A' an, weshalb deren Schwingungskopplung erwartet werden kann. Mit Rücksicht auf die Polarität der SeN-Bindung ist es wahrscheinlich, daß das ihrer Valenzschwingung entsprechende Band im Ramanspektrum eine geringe Intensität aufweist und daher nicht besonders charakteristisch ist. Zu seiner Identifizierung wurde von uns der Versuch gemacht. den Vergleich der Ramanspektren von C_5H_5N . SeO₃ und C_5D_5N . SeO₃ heranzuziehen. In den Spektren beider Derivate sollten im Bereich von $300-400 \text{ cm}^{-1}$ im ganzen fünf Banden in Erscheinung treten, von denen drei Scherendeformationsschwingungen der SeO3-Gruppe, eines der v21-Schwingung des Pyridinrings und eines der vSeN-Valenzschwingung angehören sollten. Im Ramenspektrum des d₅--Derivates können tatsächlich alle fünf Banden beobachtet werden, während im Ramanspektrum des h_5 -Derivates nur drei klar gekennzeichnet sind, während das vierte nur geringfügig an die Bande mit dem Maximum bei 359 cm⁻¹ als Schulter bei 353 cm^{-1} angedeutet ist. Wie sich aus dem Charakter dieses Bandes schließen läßt, weicht das Maximum des teilweise überdeckten Bandes vom Maximum des stärkeren Bandes nur gerinfügig ab. Das fünfte erwartete Band ist vollkommen verdeckt und bezüglich seiner Lage kann ohne eingehende Analyse der Konturen der in diesem Bereich liegenden Banden nicht entschieden werden.

Die Bandenlage und -intensität der Scherendeformationsschwingungen der SeO₃-Gruppe stimmen mit den Erwartungen überein. Das schwache Band im C_5D_5N . . SeO₃-Spektrum bei 323 cm⁻¹ entspricht offensichtlich der Schwingung v21 des Pyridinrings, das sich im C_5D_5N -Spektrum bei 329 cm⁻¹ zeigt. Das verbleibende Band bei 351 cm⁻¹ muß demnach der Valenzschwingung der SeN-Bindung entsprechen. Für das h_5 -Derivat sollte bei der Erwägung, daß die Aktivmasse des Stickstoffatoms bei der Schwingung praktisch der Molekülmasse gleich ist, gelten, daß das SeN-Schwingungsband im Intervall von 351-373 cm⁻¹ liegt. Auf Grund dieser Erwägung kann das oben besprochene, teilweise überdeckte Band berechtigt der SeN-Valenzschwingung im C_5H_5N . SeO₃ zugesprochen werden. Unter der Voraussetzung, daß sich sein Scheitelpunkt bei 358 cm⁻¹ befindet, ist das isotopische Verhältnis gleich 1,02; dies steht also in guter Übereinstimmung mit den Erwartungen. Das v21-Schwingungsband des Pyridinrings, das im C_5H_5N -Spektrum bei 379 cm⁻¹ liegt, ist zufolge seiner geringen Intensität vom bei 374 cm⁻¹ liegenden Band offensichtlich vollkommen verdeckt.

Im Intervall von 200-300 cm⁻¹ befinden sich in beiden Spektren drei Banden, die ρ und ρ 'SeO₃, und zwei Deformationsschwingungen der Winkel ϑ , CNSe- ρ und ω -Py zugesprochen werden können. Auch wenn hinsichtlich der Bandenlage der zwei zuletzt genannten Schwingungen irgendeine Information fehlt, kann auf Grund der Polarisationsmessungen die in den Tabellen I und II angeführte Zuordnung als stichhaltig angenommen werden. Die beim Lösen des C5H5N. SeO3 im flüssigen Schwefeldioxid im Spektrum des festen Komplexes um 240 cm⁻¹ befindlichen zwei intensiven Banden fließen in ein starkpolarisiertes, beiden Schwingungen vom Typ A'- ρ 'SeO₃ und ω Py angehörendes Band zusammen. Das Band bei ca. 280 cm⁻¹ ist im Lösungsspektrum depolarisiert; es erhält offensichtlich von beiden Schwingungen des Typs A"-oSeO₃ und oPy einen Beitrag. Diese Interpretation wird durch die Tatsache unterstützt, daß beim Übergang vom h_5 - in das d_5 -Derivat ein mäßiges Absinken der Wellenzahlen aller drei Banden beobachtet werden kann; dieser Umstand kann als Reflex der Teilnahme des Pyridinrings an den in diese Banden beitragenden Schwingungen aufgefaßt werden. Zwischen die Paare der genannten, in den gleichen Symmetrietyp gehörenden Schwingungen erfolgt Schwingungskopplung, die sich beim Übergang vom h_5 - in das d_5 -Derivat in den Spektren der festen Komplexe durch geringe Verschiebung beider, dem ρ 'SeO₃ und ω Py angehörenden Banden in der Richtung nach den niedrigeren Wellenzahlen hin äußern. Torsionsschwingung der SeO₃-Gruppe zeigt sich im unter 200 cm⁻¹ liegenden Bereich und ihre Lage konnte bisher mit Rücksicht auf die erhebliche Halbwertsbreite der Rayleigh-Linie aus dem Spektrum der C₅H₅N. SeO₃-Lösung nicht ermittelt werden.

Die Interpretation der den Pyridin-Fundamentalschwingungen entsprechenden Banden wurde auf Grund des Vergleichs mit der in der Literatur angeführten Zuordnung der Spektren des h_5 - und d_5 -Pyridins¹²⁻¹⁴ durchgeführt. Beim C₅H₅N. SeO₃ steht sie bis auf zwei Ausnahmen mit der bereits früher gegebenen Interpretation des Infrarotspektrums dieser Substanzen in Übereinstimmung⁷. Auf Grund der Polarisationsmessungen mußte die Bandeninterpretation im Bereich um 650 cm⁻¹ geändert werden. Das bei 644 cm⁻¹ liegende Band ist im Spektrum der C₅H₅N. SeO₃-Lösung depolarisiert und gehört daher der v26-Schwingung des Pyridinringes an, während das Band bei 662 cm⁻¹, das sich im Ramanspektrum des festen .C₅H₅N . SeO₃ in zwei Komponenten spaltet, polarisiert ist und damit den v3- und v12-Schwingungen entspricht. Den v5- und v11-Schwingungen des Pyridinrings wird in der Arbeit⁷ ein einziges Band bei 1209 cm⁻¹ zugeschrieben, während das zweite, in diesem Bereich bei 1279 cm⁻¹ liegende als Kombinationsband bezeichnet wird. Da sich dieses Band sowohl im Infrarot- als auch im Ramanspektrum des C₅H₅N. SeO₃ findet, wurde es von uns auf Grund des Vergleichs mit den Spektren einiger Pyridinkomplexe¹⁵ der v5- und das Band bei 1209 cm⁻¹ der v11-Schwingung zugeordnet. Die Polarisationsmessungen brachten auch eine eindeutige Entscheidung hinsichtlich der Orientierung des Pyridinmoleküls im C₅H₅N. SeO₃ und C₅D₅N. SeO. Wie aus den Tabellen I und II ersichtlich ist, gehen in den vollsymmetrischen A'-Typ die

Pyridinschwingungen über, die im freien Molekül zu A_1 - und B_1 -Typen der C_{2v} -Punktgruppe (also v1-v19-Schwingungen) gehören. Die Molekülsymmetrieebene koinzidiert also mit der Ebene des Pyridinrings.

Untersuchung der C₅H₅N. SeO₃- und C₅D₅N. SeO₃-Hydrolyse

Durch die Untersuchung der Hydrolyse beider Derivate bei kontrolliertem Luftfeuchtigkeitszutritt wurde der Schluß von Kurze und Paetzold⁷ bestätigt, daß bereits geringfügige Feuchtigkeitsspuren Anlaß zur Polymerisation der C₅H₅N. SeO₃-Einheiten nach der Gleichung

 $n C_5 H_5 N \cdot SeO_3 + H_2 O \rightarrow (C_5 H_5 NH)_2 (O_3 Se-[OSeO_2 \cdot C_5 H_5 N]_{n-2} O-SeO_3)$

geben. In den Schwingungsspektren der teilweise hydrolysierten Produkte zeigen sich den SeOSe-Brückenvalenzschwingungen entsprechende Banden, deren Intensität im Hydrolysenverlauf bestimmte Maximalwerte erreicht und dann zufolge der Hydrolyse dieser Bindungen durch weitere Wassermoleküle wieder sinkt. Das Band der symmetrischen Valenzschwingung der SeOSe-Bindungen findet sich bei 560 cm⁻¹ und das Band der antisymmetrischen Valenzschwingung bei 680 cm⁻¹. Beide Banden zeigen diffusen Charakter, der darauf hindeutet, daß es sich bei den Polymerisationsprodukten um oligomere Moleküle, wahrscheinlich mit veränderlicher Kettenlänge, handelt. Bereits nach relativ kurzer Luftfeuchtigkeitsexposition können in den Spektren bei 720 und 1260 cm⁻¹ Valenz- und Deformationsschwingungen der SeOH--Gruppe, deren Intensität mit steigender Hydrolyse monoton wächst, identifiziert werden. Als Endprodukt wird Pyridiniumhydrogenselenat (C₅H₅NH)HSeO₄ gewonnen.

In den Spektren zeigen sich auch vom Entstehen von $C_5H_5NH^+$ -Kationen zeugende wahrnehmbare Veränderungen. Diesem Ion können beispielsweise die Banden bei 612, 760, 1015, 1037 und 1076 cm⁻¹ in den Spektren des teilweise hydrolysierten C_5H_5N . SeO₃ zugesprochen werden. Sie können auch auf Grund der wachsenden Intensität im Hydrolysenverlauf identifiziert werden. Die Banden bei 612 und 760 cm⁻¹ erweisen sich als gleichempfindliche Indices der Partialhydrolyse des Präparats wie die Banden der Valenzschwingungen der SeOSe-Bindungen.

Авв. 1 Struktur des C₅H₅N.Se₂O₆

	Zuordnung		tter)3	03	02	2N			eO ₃	J ₃ , ∂SeOSe, ∂*SeOSe	$O_2N, \omega Py, \omega^*SeO_2$	D ₃ , @SeO ₂ N, @Py	SeN, e*SeO3, 8*OSeN) ₂ , δ*SeO ₂ , ϱ *SeO ₂	SeN	O ₃ , vSeN, v*SeN	δ'SeO ₃	eO ₃	j03	eO ₃	1	2OSe		OSe		+		-12 ^a
			∫ δ Git	tSeC	τ*Se	{ 7*Se	1 rSeC	TSeV		°,*S	<i>p</i> Se(ø'Se	<i>p</i> Se(δ _ε Ο5	δSeC	$\delta_{\rm as} O$	δ _s Se	v21,	$\delta_{\rm as} S_{\rm c}$	ξ δ [*] se	$\int \delta_{as}^* S_t$	v27	vasSt		γ, *Se	1	PyH	v26	ν3, v
		15″																		403	420b	450	510Sch		555 ←		613	650Sch	ł
		IR																				↓ ¤	↓ u		1		1	ţ,	
drolyse	lyse des I . Se ₂ O ₆	2"														·				403 s	420Sch s	453 n	506 n		555b s		615Sch s	645Sch s	
ier Partialhy	Hydro C ₅ H ₅ N	15″								219	232	262Sch	295	315Sch	323	338Sch	355	376		400	427		503Sch	$510 \leftarrow$	529	552 ←	614	640	
cte scin		RA								Ŷ			ų	† ₽	Ť		Ļ				ſ	¥	ţ	1		↑	↑		
· Produl		5″								l	229	259	285Sc	316Sc	326	345	360	373	382	398		450	498	512	529	553	610	639	I
und der	${}^{2}O_{6}$	2 () 000- 0000 () 0000 0 00000 () 0000 0 00000		Е	E	st	SS	Е	Е		E	st		10	E	s	Е	s	ss			SS	s					E	
I ₅ N . Se ₂ O ₆	C ₅ H ₅ N . Se (s)	RA	42Sch s	80	l 02	131	166	193	198Sch	-	228	250	283	309Sch	319	348Sch a	359	373	388Sch	-	1	449	495		-	ł	[640	
les C ₅ H					,							_	р	_	_			~~-~-	<i>.</i>	,		d						þ	
ktren d	. Se_2O_c in SO_2	A									n B	d W	ss d	d ss	s p			s y				ss d						SS (s
TABELLE III hwingungsspe	C ₅ H ₅ N . Lösung	R,									225	243	284	314	329			366b		-	I	445	¢	-	I	I	I	641	660
Scl																													

Toužín, Bauer:

v3, v12	v [*] _{as} SeOSe	v _s SeOSe	v*SeOH	v20, v23	v _s *SeO ₃ , v _s SeO ₃ ^a	v _s SeO ₃ , v25	$\int v_s^* SeO_2$	$\int v_{as}^* SeO_3$	v _s SeO ₂	$v'_{\rm s} {\rm SeO}_3$, v24	$v_{\rm as} {\rm SeO}_3, v_{\rm as}^* {\rm SeO}_2$	$v_{as}SeO_2, v22$	PyH ⁺	иl	v6	v8, PyH ⁺	v17	Ч	v16	ν5	δ*SeOH	v11	v15	Σ	v18	64	PyH^+	v14	y4	نا مــــــــــــــــــــــــــــــــــــ	7
670Sch	٭ 680b ←	- 730Sch	→ 752	770Sch		880b	7	:	940b		{975b			1 000	<u> </u>	l1 060	:	<u> </u>	[1 170	1 210	× 1 257	ż	1 345	1 425Sch	ċ	1 490	1 545	1 580Sch	1 620	1 642	1 680
b sst	1	b sst∢	1	st		st			Sch sst		b sst	Sch sst		sst	st	st	SS	SS	S	s	p ss q	s	s	SS		н	Ħ	Sch ss	st	s	SS
670		740		174		880	2	÷	940) 096 }	980		1 020	1 049	1 060	1 100	1 160	1 172	1 208	1 250	1 273	1 350	1 425	ż	1 490	1 542	1 578	1 612	1 641	1 687
→ $\{670 \leftarrow$			750b		870Sch	883		[910Sch	940	950Sch		980		1 020	ż	- 1 066															
699		ر 713		781	873	885	902	911	939	952	970Sch	975	1 000	1 018	1 048	1 059Sch →															
E		E		SS		sst			sst	s	SS	s		sst	s	SS	SS		SS	s		SS	SS		SS	SS		SS	SS		
671	[722		780		885			938	960	971Sch	985	-	1 022	1 050	1 060Sch	1 110	1	1 175	1 209	I	1 284	1 349		1 469	1 487	1	1 578	1 621	1	I
0.			~~~		` ~	~			~	~	¥				•					~						~					
s			s I		st F	sst p			1 E	m F	ss 2			sst	ss					ss F						ss F		ss	ss p		
699			743b		875	885	1	1	939	950	[963Schb	-~-		1 021	J1 049	-	i	Wandow	i	1 208	ļ	ż	i		ċ	I 489	l	1 580	1 618	1	I

^a Gehört zu C₅H₅N . SeO₃; Bezeichnung der Bandenintensität siehe Tabelle I.

1307

Collection Czechoslov. Chem. Commun. [Vol. 40] [1975]

TABELLE IV

Schwingungsspektrer	1 des C5D5N	$\therefore \text{Se}_2O_6 \text{ und}$	der Produkte	seiner	Partialhydrolyse
---------------------	-------------	---	--------------	--------	------------------

$C_5 D_5 N$. . $Se_2 O_6$			Hydr $C_5 D_5 I$	olyse des N . Se ₂ O ₆	ó		Zuordnung
RA	2″	RA	15″	2″	IR	15″	
73 st							ן∂Gitter
97 m							$\tau SeO_3, \tau^* SeO_3$
128 m							$\tau SeO_2 N$
172 s							τSeO_2
198 m	199		200Sch				τSeN
228 m	230		227				ϱ 'SeO ₃ , ϱ '*SeO ₃ , δ SeOSe, δ *SeOSe
250 st	255		255				$\varrho' \text{SeO}_2 \text{N}, \omega \text{Py}, \omega^* \text{SeO}_2$
∫278 ss	273		278) @Py
1	284						$\int \rho SeO_3, \rho SeO_2 N$
_	310Sc	:h→	312Sch				δ_{s} OSeN, δ_{s}^{*} OSeN, ϱ^{*} SeO ₃
312 s	317		318				δSeO ₂
324 ss	328	>	329				$\delta^* \text{SeO}_2, \nu 21$
∫343 ss	341Sc	ch					δ_{as} OSeN
1	347		347				$\int \delta_{as}^* OSeN$
359 s	361 +	_	360Sch				δ_{s} SeO ₃ , vSeN, v*SeN
369 ss	374		373Sch				$\delta'_{s}SeO_{3}$
383 ss	381Sc	ch	382Sch				$\delta_{as} SeO_3$
	398		397Sch	400	m	400	$J\delta_{s}^{*}SeO_{3}$
420 ss	421	~	428	422	s ~—	422	v27
		\rightarrow	463	?		?	δ_{as}^* SeO ₃
496 ss	498		495	503	m ←	505Sch	v_{as} SeOSe, v26
?	?		?	535	st	535	v23
	563	>	562 ←	560Sch	ss →	560 ↔	v_s^* SeOSe
	592		592	587	ss →	587	PyH ⁺
614 s	615		615	616Sch	s	615Sch	v12
641 s	645	←	645 [,]	638	st 🔶	640Sch	v3
667 ss	678		680	660	m	ſ	ν20
	700Sc	h→	703	675Sch	$m \rightarrow$	l680 ←	v_{as}^* SeOSe
708 s	713	←	710	730	sst ≁	730	v _s SeOSe
784 ss	787	\rightarrow	785	?	\rightarrow	760Sch	v22, v*SeOH
813 ss	?		?	812	ss ←	?	v25
833 ss	835		830	830	m	835	$v24, v_s^* \text{SeO}_3$
848 ss	850		849	848	m	850Sch	v17
885 sst	885		886	880	st	880	v8, v16, v _s SeO ₃
915 ss	910Sc	$h \rightarrow$	912	?		?	$v_6, v_{as}^* \text{SeO}_3, v_s^* \text{SeO}_2$
938 sst	937	←	940	940	sst	945	v _s SeO ₂
—	950	\rightarrow	951	961	sst	ſ	$PyH^+, v_{as}^*SeO_2$
978 st	977		979	973	sst	[973	v_1 , v'_s SeO ₃ , v_{as} SeO ₃

TABELLE IV

$C_5 D_5 N$. . $Se_2 O_6$		Hy C ₅ 1	vdrolyse des D ₅ N . Se ₂ O	s 96	Zuordnung
RA	2″	RA 15"	2″	IR 15″	
	_	→ 1 000	ſ	[v_{as} SeO ₂
	1 01 5	\rightarrow 1 020	1 025	sst {1 000	PyH ⁺
025 m	1 028	1 035			v5, v11
1 047 ss			-	` _	ĺ,
1 066 ss	1 068	1 068	_		<u>}</u> 2
			1 227	ss $\rightarrow 1 230$	δ^* SeOH
1 268 ss			1 272	ss 1 272	v15
			1 313	s 1315	Σ
1 334 ss			ſ	ſ	v9
1 353 ss			<u></u> ी 1 346	sst 1 351	v18
1 542 ss			1 544	s 1 555Sch	· v14
1 563 ss			1 572	m ←1 580Sch	v4
-			1 593	s → 1 594	PyH ⁺

Bezeichnung der Bandenintensität siehe Tabelle I.

Schwingungsspektren und Struktur des C_5H_5N . Se_2O_6 und C_5D_5N . Se_2O_6

Ähnlich wie das C_5H_5N . SeO₃ gehört auch das Neunzehnatommolekül C_5H_5N . . Se₂O₆ in die C_s -Punktgruppe. Das Modell seiner Struktur ist in Abb. 1 angeführt. In Abhängigkeit von der Orientierung des Pyridinringes können für die untersuchten Moleküle folgende zwei vollreduzierten Darstellungen geschrieben werden:

$$\Gamma_{C_5H_5N,Se_2O_4} = 33A'^{P,\alpha} + 18A''^{P,\alpha} (C_5H_5N \text{ liegt in } \sigma_h)$$

$$\Gamma_{C_{5}H_{5}N,S_{2},O_{5}} = 29A'^{P,\alpha} + 22A''^{P,\alpha} (C_{5}H_{5}N \text{ ist senkrecht zu } \sigma_{h})$$

Von den 24 Schwingungen der N-Se₂O₆ – Gruppe sind acht Valenzschwingungen $[2v_sSeO_3(A'), v_{as}SeO_3(A''), 2vSeOSe(A'), v_sSeO_2(A'), v_{as}SeO_2(A'') und vSeN(A')]$ und 16 Deformationsschwingungen $[2\delta_sSeO_3(A'), \delta_{as}SeO_3(A''), \rho SeO_3(A''), \rho'SeO_3(A''), \delta SeO_2(A'), \delta SeOSe(A'), \delta_sNSeO(A'), \delta_{as}NSeO(A''), \rho SeO_2N(A''), \rho SeO_2N(A''), \delta SeOSe(A'), \delta SeOSe(A'), \sigma SeO_2N(A''), \sigma$

Collection Czechoslov, Chem. Commun. [Vol. 40] [1975]

Luftfeuchtigkeit bei der Probeherstellung für die Messung auszuschließen, durch die Gegenwart von Partialhydrolysenprodukten stets verzeichnet.

Im Ramanspektrum des festen C5H5N. Se2O6 können im Bereich der SeO-Valenzbindungen alle fünf vorausgesetzten Banden beobachtet werden. Drei von ihnen, die den Valenzschwingungen der SeO₃-Gruppen entsprechen, können leicht auf Grund der Voraussetzung identifiziert werden, da sie sich weder durch die Lage noch durch die Intensität von den analogen Banden im C5H5N. SeO3-Spektrum besonders unterscheiden. Die Verschiebung beträgt tatsächlich nur fünf bis zehn cm⁻¹ in der Richtung zu den höheren Wellenzahlen hin und das Intensitätsverhältnis bleibt praktisch gewahrt. Die den Valenzschwingungen in der SeO,-Gruppe entsprechenden Banden liegen bei etwas höheren Wellenzahlenwerten, ein Umstand, der mit der Verteilung beider vom Selenatom gebildeten π -Bindungen in nur zwei σ -Bindungen in Übereinstimmung steht. Im Ramanspektrum des C₅D₅N. Se₂O₆ können lediglich symmetrische Valenzschwingungen beider Gruppen beobachtet werden. Die antisymmetrischen Valenzschwingungen sind zufolge der Verschiebung des intensiven Schwingungsbandes eines Pyridinringes von 1022 cm⁻¹ im C₅H₅N. Se₂O₆-Spektrum nach 978 cm⁻¹ im C₅D₅N. SeO₆-Spektrum überdeckt. Für die Kraftkonstanten und die Ordnung der SeO-Bindungen im C₅H₅N. Se₂O₆ können folgende Werte bestimmt werden:

> $f_{SeO_3} = 6.92 \text{ mdyn/Å}, \quad f'_{SeO_3} = 0.00 \text{ mdyn/Å}, \quad N_{SeO_3} = 1.81,$ $f_{SeO_2} = 7.39 \text{ mdyn/Å}, \quad f'_{SeO_2} = 0.19 \text{ mdyn/Å}, \quad N_{SeO_2} = 1.93.$

Die Ordnung der SeO-Bindung in der SeO₃-Gruppe ist etwas höher als der C_5H_5N . . SeO₃ entsprechende Wert und die gleiche Größe in der SeO₂-Gruppe ist niedrigerer als die theoretisch vorausgesetzte (2,00). Daraus kann geschlossen werden, daß durch Vermittlung der SeOSe-Brückenbindung teilweiser Ausgleich der π -Elektronendichte an allen SeO-Bindungen erfolgt.

Die Valenzschwingungen der SeOSe-Brückenbindungen im Ramanspektrum zeigen sich bei 495 und 722 cm⁻¹. Wiewohl in der in betrachtgezogenen C_s -Punktgruppe diese beiden Schwingungen zum vollsymmetrischen A'-Typ gehören (beide Bindungen liegen in der Molekülsymmetrieebene), erweist sich das Verhältnis ihrer Intensität als etwas unerwartet. Das Band der hinsichtlich der Operationen der C_{2v} -Punktgruppe das die Lokalsymmetrie der Brücke repräsentiert, sollte im Ramanspektrum intensiver sein und bei niedrigeren Wellenzahlenwerten als das weniger intensive Band der antisymmetrischen Schwingung liegen. Deutlich intensiver ist jedoch das Band mit der Wellenzahl 722 cm⁻¹, das wir daher der symmetrischen Schwingung und das schwächere Band bei 495 cm⁻¹ der antisymmetrischen Brückenvalenzschwingung zuschrieben.

1310

Beim Lösen von C_5H_5N . Se_2O_6 im flüssigen Schwefeldioxid erfolgte seine teilweise Dissoziation zu C_5H_5N . SeO_3 und Selen(VI)-oxid. Im Lösungsspektrum können im Bereich der symmetrischen Valenzschwingungen der SeO-Mehrfachbindungen in der SeO₃-Gruppe zwei Banden bei 875 und 885 cm⁻¹ beobachtet werden. Das erste gehört zu v_sSeO_3 in C_5H_5N . SeO₃, das zweite zur gleichen Schwingung in C_5H_5N . Se_2O_6 . Im Bereich von 640-670 cm⁻¹ finden sich anstelle der erwarteten zwei mittelintensiven Banden drei, von denen das Band bei 660 cm⁻¹ zu den v3- und v12-Schwingungen des Pyridinrings in C_5H_5N . SeO_3 gehört, während das analoge Band für C_5H_5N . Se_2O_6 sich bei 669 cm⁻¹ befindet.

Collection Czechoslov, Chem. Commun. [Vol. 40] [1975]

Der Vergleich der Schwingungsspektren von C_5H_5N . SeO₃ und C_5H_5N . Se₂O₆ führt zum Schluß, daß der Ladungsübertrag und damit auch die Stärke der Donator--Akzeptorinteraktion in C_5H_5N . Se₂O₆ geringfügig größer ist als in C_5H_5N . SeO₃. Wie daraus geschlossen werden kann, ist die Lage des zur Valenzschwingung der SeN-Bindung gehörenden Bandes in beiden Spektren ungefähr gleich. Seine Identifizierung ist jedoch im C_5H_5N . Se₂O₆-Spetrum noch schwieriger als beim C_5H_5N . . SeO₃, da sich im Bereich von 300-400 cm⁻¹ neben $2\delta_s$ SeO₃, δ_{as} SeO₃, v21 und vSeN noch die Schwingungen δ_s OSeN, δ_{as} OSeN und δ SeO₂ äußern. Die in den Tabellen III und IV angeführte Zuordnung der Banden in diesem Bereich muß als lediglich informativ angesehen werden, da auch die C_5D_5N . Se₂O₆-Spektren keine hinreichenden Informationen brachten. Wie die aus den bei der C_5H_5N . Se₂O₆-Lösung durchgeführten Polarisationsmessungen im flüssigen Schwefeldioxid hervorging, ist die Orientierung des Pyridinringes erwartungsgemäß die gleiche wie beim C_5H_5N . SeO₃.

Untersuchung der C₅H₅N. Se₂O₆- und C₅D₅N. Se₂O₆-Hydrolyse

Wie die Untersuchung der Schwingungsspektren der partiell hydrolysierten Proben von C_5H_5N . Se_2O_6 und C_5D_5N . Se_2O_6 zeigte, führt die sehr kurze Exposition mit Luftfeuchtigkeit zur Polymerisation, deren Verlauf etwas komplizierter, in den Hauptzügen jedoch der C_5H_5N . SeO_3 -Polymerisation ähnlich ist. Für den Verlauf der hydrolytischen Reaktion kann das in Abb. 2 angeführte Schema vorgeschlagen wer-

ABB. 3 Schema der Reaktion des Selen(VI)-oxids mit Pyridin

den. Zufolge der Lokalisierung der negativen Ladung an den SeO₃-Endgruppen ist es wahrscheinlich, daß nukleophile Attaken des Wassermoleküls vorrangig am Selenatom in den SeO₂-Gruppen erfolgen. Als zweite Hydrolysenphase zeigt sich das Entstehen der Selensäure und des Pyridiniumhydrogenselenats im Molverhältnis 1 : 1. Es werden augenscheinlich vorerst die SeO₃-Seitengruppen unter Abspalten der Selensäure angefallen und dann erst erfolgt, vollkommen analog dem polymeren Produkt der C₅H₅N. SeO₃-Hydrolyse, in der weiteren Phase Destruktion der polymeren Kette.

Der Mechanismus der Reaktion des Selen(VI)-oxids mit Pyridin

Auf Grund der oben angeführten Erkenntnisse kann für den bei der Reaktion des Selen(VI)-oxids mit Pyridin im Medium flüssigen Schwefeldioxids herrschenden Mechanismus das in Abb. 3 angeführte Schema vorgeschlagen werden. Als erster Reaktionsschritt ist die nukleophile Attake des Pyridinmoleküls auf eines der Selen(VI)-atome anzusehen. Ein Zwischenprodukt von entsprechender Zusammensetzung kann im Reaktionsgemisch nicht nachgewiesen werden. Mit Rücksicht auf die Existenz der stabilen C_5H_5N . Se₂O₆-Additionsverbindung scheint es unwahrscheinlich, daß bereits in diesem Stadium Öffnung des Se₄O₄-Cyclus des tetrameren Selen(VI)-oxids erfolgt, da der Donator-Akzeptorkomplex C_5H_5N . Se₄O₁₂ mit der Se₄O₁₂-Gruppe in Form einer linearen Kette wahrscheinlich isoliert werden könnte. Das Öffnen des Cyclus erfolgt also erst durch Einwirken des zweiten Pyridinmoleküls, das den Ring am gegenüberliegenden Selenatom mit Rücksicht auf das bereits anwesende Donatormolekül anfällt. Als Ergebnis ist das Entstehen zweier

 C_5H_5N . Se₂O₆-Moleküle anzusehen, die durch eine weitere Reaktion mit Pyridin als Endprodukt C_5H_5N . SeO₃ geben.

Thermisches Verhalten des C₅H₅N. SeO₃ und C₅H₅N. Se₂O₆

Mit einer C_5H_5N . SeO₃-Probe wurden beide Messungen durchgeführt, deren Aufzeichnung in Abb. 4 und 5 angegeben ist. Die Probe wurde zuerst nur unter den Zersetzungspunkt bis auf 125°C erhitzt, worauf auch die Abkühlungskurve beobachtet wurde. Wie aus dem Verlauf der DTA-Kurve geschlossen werden kann, existiert C_5H_5N . SeO₃ in zwei kristallischen Modifikationen, wobei ihren gegenseitigen Übergängen auf der Erhitzungskurve ein endothermer Effekt bei 80°C und auf der Abkühlungskurve ein exothermer bei 65°C entspricht. Die Umbildung ist demnach reversibel, bei Raumtemperatur ist nur eine einzige Modifikation stabil. Die undeutlichen endothermen Effekte auf der Erhitzungskurve bei 115 und 120°C (Abb. 4) äußern sich bei der verminderten, beim Erhitzen der Probe über den Zersetzungspunkt verwendeten DTA-Empfindlichkeit überhaupt nicht, wiewohl der der Umbildung beider Modifikationen entsprechende endotherme Effekt auch hier sehr markant ist. Die stark exotherme C_5H_5N . SeO₃-Zersetzung beginnt bei 155°C mit dem Maximum bei 178°C. Bis zur Temperatur von 150°C erfolgt keine Gewichtsabnahme, weshalb die TG- und DTG-Kurven in Abb. 4 und 5 nicht eingezeichnet sind.

ABB. 6 Derivatogramm des $C_5H_5N.Se_2O_6$ Einwaage 0,2153 g, $T = 150^{\circ}C$, DTA-Empfindlichkeit 1/7.

Das extreme Hygroskopievermögen des C_5H_5N . Se_2O_6 war der Grund, warum bei der Untersuchung des thermischen Verhaltens dieser Substanz stets beim Beginn der TG-Kurve eine geringfügige Gewichtszunahme (<0,5%), die der Luftfeuchtigkeitsaufnahme entspricht, beobachtet wurde. Aus diesem Grund hat der undeutlich endotherme Effekt auf der in Abb. 6 veranschaulichten Kurve, entsprechend dem Schmelzpunkt des C_5H_5N . Se_2O_6 das Maximum nur bei 78°C. Die stark exotherme Zersetzung der Probe verläuft in zwei, nicht vollkommen abgetrennten Stufen mit den Maxima bei 119 und 132°C. Es erfolgt bis 120°C keine Gewichtsabnahme und es existiert auch keine Andeutung, daß C_5H_5N . Se₂O₆ in mehreren kristallischen Modifikationen existiert.

LITERATUR

- 1. Dostál K., Krejčí J.: Z. Anorg. Allgem. Chem. 269, 29 (1954).
- 2. Schmidt M., Wilhelmová I.: Chem. Ber. 97, 872 (1964).
- 3. Blanka B., Toužín J.: diese Zeitschrift 32, 3284 (1967).
- 4. Paul R. C., Sharma R. D., Malhotra K. C.: Indian J. Chem. 10, 428 (1972).
- 5. Kurze R., Paetzold R.: Z. Anorg. Allgem. Chem. 387, 361 (1972).
- 6. Toužín J., Kratochvíla J.: diese Zeitschrift 34, 1080 (1969).
- 7. Kurze R., Paetzold R.: Z. Anorg. Allgem. Chem. 387, 367 (1972).
- 8. Toužín J., Černík M., Růžička A., Dostál K.: Unveröffentlichte Ergebnisse.
- 9. Toul F., Dostál K.: diese Zeitschrift 16, 531 (1951).
- 10. Blanka B., Hudec P., Mošna P., Toužín J.: diese Zeitschrift 28, 3434 (1963).
- 11. Krejčí J., Zbořilová L., Horsák I.: diese Zeitschrift 32, 3468 (1967).
- 12. Long D. A., Murfin F. S., Thomas E. L.: Trans. Faraday Soc. 59, 12 (1963).
- 13. Wilmhurst J. K., Bernstein H. L.: Can. J. Chem. 35, 1185 (1957).
- 14. Castelluci E., Sbrana G., Verderame F. D.: J. Chem. Phys. 51, 3762 (1969).
- 15. Gill N. S., Nuttal R. H., Scaife D. E., Sharp D. W. A.: J. Inorg. Nucl. Chem. 18, 79 (1961).

Übersetzt von K. Grundfest.